Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.

Identifieur interne : 004303 ( Main/Exploration ); précédent : 004302; suivant : 004304

Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.

Auteurs : Maria Israelsson [Suède] ; Ewa Mellerowicz ; Makiko Chono ; Jonas Gullberg ; Thomas Moritz

Source :

RBID : pubmed:15122019

Descripteurs français

English descriptors

Abstract

To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula x Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3beta-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3beta-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3beta-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed.

DOI: 10.1104/pp.104.038935
PubMed: 15122019
PubMed Central: PMC429357


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.</title>
<author>
<name sortKey="Israelsson, Maria" sort="Israelsson, Maria" uniqKey="Israelsson M" first="Maria" last="Israelsson">Maria Israelsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE-901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa" sort="Mellerowicz, Ewa" uniqKey="Mellerowicz E" first="Ewa" last="Mellerowicz">Ewa Mellerowicz</name>
</author>
<author>
<name sortKey="Chono, Makiko" sort="Chono, Makiko" uniqKey="Chono M" first="Makiko" last="Chono">Makiko Chono</name>
</author>
<author>
<name sortKey="Gullberg, Jonas" sort="Gullberg, Jonas" uniqKey="Gullberg J" first="Jonas" last="Gullberg">Jonas Gullberg</name>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15122019</idno>
<idno type="pmid">15122019</idno>
<idno type="doi">10.1104/pp.104.038935</idno>
<idno type="pmc">PMC429357</idno>
<idno type="wicri:Area/Main/Corpus">004274</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004274</idno>
<idno type="wicri:Area/Main/Curation">004274</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004274</idno>
<idno type="wicri:Area/Main/Exploration">004274</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.</title>
<author>
<name sortKey="Israelsson, Maria" sort="Israelsson, Maria" uniqKey="Israelsson M" first="Maria" last="Israelsson">Maria Israelsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE-901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellerowicz, Ewa" sort="Mellerowicz, Ewa" uniqKey="Mellerowicz E" first="Ewa" last="Mellerowicz">Ewa Mellerowicz</name>
</author>
<author>
<name sortKey="Chono, Makiko" sort="Chono, Makiko" uniqKey="Chono M" first="Makiko" last="Chono">Makiko Chono</name>
</author>
<author>
<name sortKey="Gullberg, Jonas" sort="Gullberg, Jonas" uniqKey="Gullberg J" first="Jonas" last="Gullberg">Jonas Gullberg</name>
</author>
<author>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cloning, Molecular (MeSH)</term>
<term>DNA, Complementary (chemistry)</term>
<term>DNA, Complementary (genetics)</term>
<term>DNA, Complementary (isolation & purification)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gibberellins (biosynthesis)</term>
<term>Gibberellins (metabolism)</term>
<term>Homeostasis (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Mixed Function Oxygenases (genetics)</term>
<term>Mixed Function Oxygenases (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire (composition chimique)</term>
<term>ADN complémentaire (génétique)</term>
<term>ADN complémentaire (isolement et purification)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gibbérellines (biosynthèse)</term>
<term>Gibbérellines (métabolisme)</term>
<term>Homéostasie (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Mixed function oxygenases (génétique)</term>
<term>Mixed function oxygenases (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Gibberellins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Complementary</term>
<term>Mixed Function Oxygenases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>DNA, Complementary</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Gibberellins</term>
<term>Mixed Function Oxygenases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Gibbérellines</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN complémentaire</term>
<term>Mixed function oxygenases</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>ADN complémentaire</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Gibbérellines</term>
<term>Mixed function oxygenases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>Homeostasis</term>
<term>Hybridization, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Homéostasie</term>
<term>Hybridation génétique</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula x Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3beta-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3beta-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3beta-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15122019</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>135</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2004</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.</ArticleTitle>
<Pagination>
<MedlinePgn>221-30</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>To broaden our understanding of gibberellin (GA) biosynthesis and the mechanism whereby GA homeostasis is maintained in plants, we have investigated the degree to which the enzyme GA 3-oxidase (GA3ox) limits the formation of bioactive GAs in elongating shoots of hybrid aspen (Populus tremula x Populus tremuloides). We describe the cloning of a hybrid aspen GA3ox and its functional characterization, which confirmed that it has 3beta-hydroxylation activity and more efficiently converts GA9 to GA4 than GA20 to GA1. To complement previous studies, in which transgenic GA 20-oxidase (GA20ox) overexpressers were found to produce 20-fold higher bioactive GA levels and subsequently grew faster than wild-type plants, we overexpressed an Arabidopsis GA3ox in hybrid aspen. The generated GA3ox overexpresser lines had increased 3beta-hydroxylation activity but exhibited no major changes in morphology. The nearly unaltered growth pattern was associated with relatively small changes in GA1 and GA4 levels, although tissue-dependent differences were observed. The absence of increases in bioactive GA levels did not appear to be due to feedback or feed-forward regulation of dioxygenase transcripts, according to semiquantitative reverse transcription polymerase chain reaction analysis of PttGA20ox1, PttGA3ox1, and two putative PttGA2ox genes. We conclude that 20-oxidation is the limiting step, rather than 3beta-hydroxylation, in the formation of GA1 and GA4 in elongating shoots of hybrid aspen, and that ectopic GA3ox expression alone cannot increase the flux toward bioactive GAs. Finally, several lines of evidence now suggest that GA4 has a more pivotal role in the tree hybrid aspen than previously believed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Israelsson</LastName>
<ForeName>Maria</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mellerowicz</LastName>
<ForeName>Ewa</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chono</LastName>
<ForeName>Makiko</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gullberg</LastName>
<ForeName>Jonas</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moritz</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AY433958</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005875">Gibberellins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D006899">Mixed Function Oxygenases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.99.-</RegistryNumber>
<NameOfSubstance UI="C492222">gibberellin 2-oxidase, Populus tremula X Populus tremuloides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.99.-</RegistryNumber>
<NameOfSubstance UI="C492221">gibberellin 20-oxidase 1, Populus tremula X Populus tremuloides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.99.-</RegistryNumber>
<NameOfSubstance UI="C492220">gibberellin 3-oxidase 1, Populus tremula X Populus tremuloides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.99.-</RegistryNumber>
<NameOfSubstance UI="C108186">gibberellin 3beta-hydroxylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005875" MajorTopicYN="N">Gibberellins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006899" MajorTopicYN="N">Mixed Function Oxygenases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15122019</ArticleId>
<ArticleId IdType="doi">10.1104/pp.104.038935</ArticleId>
<ArticleId IdType="pii">pp.104.038935</ArticleId>
<ArticleId IdType="pmc">PMC429357</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8907-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9238076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Mar;17(5):547-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10205907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jul;108(3):1049-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7630935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Dec;5(12):523-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Oct;53(3):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14750517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Apr;214(6):920-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11941469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Feb;7(2):195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7756830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):830-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Jul;18(7):784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4698-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S61-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Aug;117(4):1195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Apr;119(4):1199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):489-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Oct;20(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 2001 Dec;20(4):319-331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2000 Mar;41(3):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jun;117(2):559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9625708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 20;394(6695):805-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9723623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Jun;112(2):251-260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):443-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Dec;10(12):2115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9836749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(3):285-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6640-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7604047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Aug;114(4):1471-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9276956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Aug;9(8):1435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9286112</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chono, Makiko" sort="Chono, Makiko" uniqKey="Chono M" first="Makiko" last="Chono">Makiko Chono</name>
<name sortKey="Gullberg, Jonas" sort="Gullberg, Jonas" uniqKey="Gullberg J" first="Jonas" last="Gullberg">Jonas Gullberg</name>
<name sortKey="Mellerowicz, Ewa" sort="Mellerowicz, Ewa" uniqKey="Mellerowicz E" first="Ewa" last="Mellerowicz">Ewa Mellerowicz</name>
<name sortKey="Moritz, Thomas" sort="Moritz, Thomas" uniqKey="Moritz T" first="Thomas" last="Moritz">Thomas Moritz</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Israelsson, Maria" sort="Israelsson, Maria" uniqKey="Israelsson M" first="Maria" last="Israelsson">Maria Israelsson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004303 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004303 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15122019
   |texte=   Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects on gibberellin homeostasis and development.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15122019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020